
Robo-128 Wiring I/O Mobile robot l 1

Robo-128
Wiring I/O mobile robot

the autonomous robot
programming with C/C++

Activity manual
version 1.0

(c) Innovative Experiment Co. ,Ltd.
www.inex.co.th

www.inexglobal.com

http://www.inex.co.th
http://www.inexglobal.com

2 l Robo-128 Wiring I/O Mobile robot

Credits
RBX-128 Robot controller board are trademarks of Innovative Experiment Co., Ltd.

AVR, Atmel, Atmel logo, AVR Studio are registered trademarks of Atmel Corporation.

WinAVR is trademark of SourceForge, Inc.

AVR-GCC is copyright of Free Software Foundation, Inc.

Wiring is an open project initiated by Hernando Barragan (Universidad de Los Andes,
Architecture and Design School). Wiring started at the Interaction Design Institute Ivrea
in Italy and it is currently developed at the Universidad de Los Andes in Colombia.

FTDI is a trademark of Future Technology Devices Intl Ltd.

Microsoft, Windows are registered trademarks of the Microsoft Corporation.

Windows 2K, Windows XP, and Windows Vista are registered trademarks of the Microsoft
Corporation.

All product and service names mentioned herein are the trademarks of their respective
owners.

Robo-128 Wiring I/O Mobile robot l 3

Chapter 1 Robo-128 introduction..5

Chapter 2 Robo-128 Development tools...16

Chapter 3 Wiring IDE and Skethc Uploading...21

Chapter 4 Robo-128 Library file..30

Chapter 5 Robo-128 hardware experiment...44

Chapter 6 Robo-128 movement..66

Chapter 7 Remote color sensing of Robo-128...92

Contents

4 l Robo-128 Wiring I/O Mobile robot

16 l Robo-128 Wiring I/O Mobile robot

Robo-128 supports all developent tools including assembly, basic and C language.
However, we suggest using the C/C++ programming tool for Robo-128. It is called Wiring
(www.wiring.org.co). Wiring is an open source programming env ironment and
electronics i/o board for exploring the electronic arts, tangible media, teaching and
learning computer programming and prototyping with electronics. It illustrates the
concept of programming with electronics and the physical realm of hardware control
which are necessary to explore physical interaction design and tangible media aspects.

Wiring is an open project initiated by Hernando Barragan (Universidad de Los
Andes Architecture and Design School). Wiring started at the Interaction Design Institute
Ivrea in Italy and it is currently developed at the Universidad de Los Andes in Colombia.

Wiring builds on Processing, an open project initiated by Ben Fry (Broad Institute)
and Casey Reas (UCLA Design Media Arts). Processing evolved from ideas explored in
the Aesthetics and Computation Group at the MIT Media Lab.

The operation system that supported is :

l Mac OS X 10.4 (Both Intel and PowerPC CPU)

l Windows XP and Vista

l Fedora Core 6 (Linux)

This chapter describes about introduction to Wiring. Begin with Installation, explain
about Wiring IDE components and Menu bar details.

Chapter 2
 Robo-128 Development tools

http://www.wiring.org.co)

Robo-128 Wiring I/O Mobile robot l 17

2.1 Software installation
(1) Insert CD-ROM of Robo-128 to CD-ROM drive. Click on the file Wiring0023

Setup.exe. The welcome window is appeared.

(2) Click on the OK button in each intallation step until installation is completed.

(3) This installation includes Wiring software and USB driver for Robo-128 controller
board.

(4) Run software by select menu Start à All Programs à Wiring à Wiring .

18 l Robo-128 Wiring I/O Mobile robot

2.2 Checking the USB Serial port for Robo-128
After installing Wiring IDE and USB driver, the next step is to check the USB serial

port or virtual COM port that was created by USB driver.

(1) Plug the USB cable between Robo-128 with USB port and turn-on

(2) Wait until USB indicator is on.

(3) Click on the Start button and select to Control Panel

(4) Double-click on System icon

(5) Select tab Hardware and click on the Device Manager button.

R R o

> R R

b o - 1 2 8 b o a

u n n i n . . E -

8

g t d.

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9V
 B

AT
T.

4850SW249SW1ADC7KNOB

TWI UART1
0 SC L 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
AR

T

+ - +

-
S

ON

45 ADC5

d r

USB DA TA

E2

RESET

Turn ON2

3 LCD displays Run mode message.Connect with USB1

Figure 2-1 : Checking USB serial port of Robo-128

Robo-128 Wiring I/O Mobile robot l 19

(6) Check the hardware listing at Port. You should see USB Serial port . Check the
position. Normally it is COM3 or higher (for example; COM10). You must use this COM
port with the Wiring IDE software.

2.2 Robo-128 with Wiring IDE interfacing
(1) Open Wiring IDE by double-click on the file wiring.exe in the folder Wiring-0023

(number of version could be changed) Wait for a while. The main window of Wiring IDE
will appear.

20 l Robo-128 Wiring I/O Mobile robot

(2) Select menu Tools à Serial Port to choose the USB serial port of Robo-128. It is
COM10

Must do this step for every new connection of the Robo-128 with Wiring IDE

(3) Select the bootloader firmware of Wiring I/O hardware which is connected
with Wiring IDE by select menu Tools à Firmware version à 2.x

Now Robo-128 is ready for interfacing and code development with the Wiring
IDE.

Robo-128 Wiring I/O Mobile robot l 21

Wiring is Open Source Software. The PDE (Processing Development Environment)
is released under the GNU GPL (General Public License). The export libraries (also known
as ‘core’) are released under the GNU LGPL (Lesser General Public License).

Wiring IDE is designed a simple and usable editor for writing and running programs.
The Wiring Environment (Integrated Development Environment or IDE) has a text editor
and compiler for writing programs for the Wiring I/O Board. See the figure below. When
the “run” button is clicked, the program compiles. The toolbar provides functionality for
compiling programs, creating a new sketch, opening, saving, and exporting to the I/O
Board. Additional commands are available through the menus. The message area gives
feedback while saving and exporting and also shows the locations of errors when
programs are compiled. The text area presents messages and can be written from the
I/O Board using with the print() programming function.

Menu bar

Tools bar

Sketch tab

Text editor area

Message area

Text area/
Serial Terminal

Chapter 3
 Wiring IDE and Sketch uploading

22 l Robo-128 Wiring I/O Mobile robot

3.1 Menu bar
It includes the File, Edit, Sketch, Tools and Help menu. It works with the active

current sketch tab only.

3.1.1 File

New (Ctrl+N) or click on the button on the Tools bar : Creates a new sketch,
named as the current date is the format “sketch_YYMMDDa” such as sketch_080407a.

Open (Ctrl+O) or click on the button on the Tools bar. : Gives the option to
open a sketch from anywhere on the local computer or network, the sketchbook, or to
open an example.

Save (Ctrl+O) or click on the button on the Tools bar : Saves the open sketch
in it’s current state.

Save as... (Ctrl+Shift+O) : Saves the currently open sketch, with the option of
giving it a different name. Does not replace the previous version of the sketch.

Upload to I/O Board (Ctrl+U) or click on the button on the Tools bar. : Be
default, exports the program to the Wiring I/O Board (inthis document is Robo-128
controller board). After the files are exported, the directory containing the exported
files is opened. There is more information about uploading below.

Preferences : Allows you to change some of the ways Wiring works.

Quit (Ctrl+Q) : Exits the Wiring Environment and closes all Wiring windows.

Robo-128 Wiring I/O Mobile robot l 23

3.1.2 Edit
The Edit menu provides a series of commands for editing the Wiring files.

Undo (Ctrl+Z) : Reverses the last command or the last entry typed. Cancel the
Undo command by choosing Edit ? Redo.

Redo (Ctrl+Y) : Reverses the action of the last Undo command. This option is only
available, if there has already been an Undo action.

Cut (Ctrl+X) : Removes and copies selected text to the clipboard (an off-screen
text buffer)

Copy (Ctrl+C) : Copies selected text to the clipboard.

Paste (Ctrl+V) : Inserts the contents of the clipboard at the location of the cursor,
and replaces any selected text.

Select All (Ctrl+A) : Selects all of the text in the file which is currently open in the
text editor.

Find (Ctrl+F) : Finds an occurrence of a text string within the file open in the text
editor and gives the option to replace it with a different text.

Find Next (Ctrl+G) : Finds the next occurrence of a text string within the file open
in the text editor.

24 l Robo-128 Wiring I/O Mobile robot

3.1.3 Sketch
The Sketch menu provides a series of commands relate compiling the Wiring files.

Verify/Compile (Ctrl+R) or click on the button on the Tools bar : Verify the
code (compiles the code)

Stop or click on the button on the Tools bar : Stops current activity.

Show Sketch Folder : Opens the directory for the current sketch.

Add File : Opens a file navigator. Select a code files to add it to the sketches
“data” directory.

Import Library : Open the included library of Wiring.

3.1.4 Tools

Auto Format (Ctrl+T) : Attempts to format the code into a more human-readable
layout. Auto Format was previously called Beautify.

Firmware version : Select the suitable bootloader firmware of Wiring I/O board.

Serial Port : Allows to select which serial port to use as default for uploading
code to the Wiring I/O Board or monitor data comming from it. The data coming from
the Wiring I/O Board is printed in character format in the text area region of the console.

Robo-128 Wiring I/O Mobile robot l 25

3.1.5 Help

Getting Started : Opens the getting started in the default Web browser.

Troubleshooting : Opens the troubleshooting in the default Web browser.

Reference : Opens the reference in the default Web browser. Includes reference
for the language, programming environment, libraries, and a language comparison.

Find in Reference (Ctrl+Shift+F) : Select a word in your program and select “Find
in Reference” to open that reference HTML page.

Visit Wiring.org.co (Ctrl+5) : Opens default Web browser to the Wiring homepage.

About Wiring : Opens a concise information panel about the software.

26 l Robo-128 Wiring I/O Mobile robot

3.2 Toolbar
The toolbar provides access to the seven basic functions of Processing: Run,

Stop, New, Open, Save, Export, Serial monitor.

 Run : Compiles the code

 Stop : Terminates any activity on the editor

 New : Creates a new sketch. In Wiring, projects are called sketches.

 Open : Select and load a pre-existing sketch. A menu opens and you
may choose from your own sketchbook, examples, or you can open a sketch from
anywhere on your computer or network.

 Save : Saves the current sketch into the Processing sketches folder. If
you want to give the sketch a name other than the current date, you can choose Save
As from the File menu.

 Upload to I/O Board : Exports the current sketch into the sketchbook

and uploads it to the Wiring I/O Board (inthis document is Robo-128 controller board).
The directory containing the files is opened.

 Serial monitor : Opens a serial port connection to monitor the data

comming from the Wiring I/O Board, this is very useful for debugging and verification.

3.3 Serial monitor
Wiring IDE has a Serial monitor. It is a serial data communication tool. User can

transmit, receive and show the serial data via this monitor with USB serial port of computer.
In the developed sketch code, must put two imporatant commnands as follows :

1. Serial.begin() : Set the baud rate of serial data communication. Normally the
baud rate value is 9600 bit per second. Must add this command into Setup() of sketchbook.

2. Serial.println() : Assign the sending message to Serial monitor on the Wiring IDE.

Openning the Serial monitor is very easy. Click on the button at Toolbar. The
message area at the bottom of the main screen will change to the Serial monitor window
following the figure below.

Robo-128 Wiring I/O Mobile robot l 27

Connect USB port

R o b

> D B

o - 1 2 8 2 b o a

o o t l o d r D E

8

a - de

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9V
 B

AT
T.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
AR

T

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

Turn-on power
2

5 LCD displays Program mode message.

Press the START switch and hold
3 seconds. This is method to set
trhe Robo-128 to Program mode

4

1

Wait until the
blue LED at USB
label is turned-on.

3

LED at port 48 is turned-on.
It displays Robo-128 entry to
Program mode already.

3.4 How to develop the program
(1) Check the hardware connection and set the Robo-128 to Program mode following

figure 3-1. It is important that the USB serial port is now connected to Robo-128 controller
board and your computer is running the Wiring IDE with all configurations ser properly.

(2) Open the Wiring IDE. Create the new sketch file by clicking on the button

at Toolbar or select from File à New

(3) Type the example code below

#include <robot.h> // Include main library
int ledPin = 48; // LED connected to pin 48 (bootloader)
void setup()
{

lcd("Hello Robot!"); // Title message on LCD
pinMode(ledPin, OUTPUT); // Sets the digital pin as output

}
void loop()
{

digitalWrite(ledPin, HIGH); // Sets the LED on
delay(1000); // Waits for a second
digitalWrite(ledPin, LOW); // LED off
delay(1000);

}

Figure 3-1 : How to set the Robo-128 to Proigram mode

28 l Robo-128 Wiring I/O Mobile robot

 Thi s example code demonstrates the Robo-128 basic operation. An LCD module
displays testing message and LED at port 48 is controlled.

(4) Go to menu File à Save As for saving the new sketch as hello. Now we have
hello.pde in the hello folder.

(5) Compile this sketch file by clicking on the button at Toolbar ot menu
Sketch à Compile/Verify.

If have any error occurs, the error and warning message are shown at
the Message area and Text area following the figure below.

Back to edit the code to fix any error and re-compile again until completely.
The Message area shows Done compiling message following the picture below.

After done compiling, in the hello folder have the new folder occur. It is
Applet folder. This folder contains C/C++ source code and the output file .hex. for
example as hello.hex, hello.cpp and hello.pde

Robo-128 Wiring I/O Mobile robot l 29

(6) Connect the Robo-128 with USB port. Turn-on power. Wait until USB connection
is completely (blue LED at USB is turned-on) .

(7) Press and hold the START button on theRobo-128 controller board 3 seconds.
The LCD module shows Entry program mode message following the figure 3-1.

(8) Click on the Upload to Wiring Hardware. Code uploading is started. Wait
until uploading complete. The message Done uploading. RESET to start the new program.
is shown in the status bar of Wiring IDE.

(9) Press the START switch at the Robo-128 controller board again. Robo-128 entry
to Run mode. It executes the code.

LCD module displays message “Hello World!” and LED at port 48 is blinked.

30 l Robo-128 Wiring I/O Mobile robot

C/C++ program development with Wiring for Robo-128 is supported by robot.h library
file. With this library, user can create the control program for Robo-128 easier and faster.

The sturcture of the robot.h library file is shown below.

robot.h library file for Robo-128 robot

lcd.h
- lcd

sleep.h
- sleep

in_out.h
- in
- out
- sw1_press
- sw2_press
- sw1
- sw2

servo.h
- servo
- servo_stop
- servo_read
- servo_get_status

motor.h
- motor
- motor_stop

analog.h
- analog

serial.h
- uart
- uart_putc
- uart_puts
- uart_set_baud
- uart_get_baud
- uart_available
- uart_getkey
- uart1
- uart1_putc
- uart1_puts
- uart1_set_baud
- uart1_get_baud
- uart1_available
- uart1_getkey

sound.h
- beep
- sound

Chapter 4
 Robo-128 Library file

Robo-128 Wiring I/O Mobile robot l 31

4.1 lcd.h : LCD module library
This library file supports all instructions for displaying message and value at the LCD

module on the Robo-128 controller board. This library must be included at the top of the
program with the command #include as follows :

#include <lcd.h> or #include <robot.h>

Main function of this library is lcd

Syntax
void lcd(char *p,...)

Parameter

p - Type of display data. Support the special character for setting display method.

Command Operation

%c or %C Display 1 character

%d or %D Display the decimal value -32,768 to +32,767

%l or %L Display the decimal value -2,147,483,648 to +2,147,483,647

%f or %F Display floating point 3 digits

#c Clear message before next display

#n Display message on the second line (bottom line)

Example 4-1
lcd(“Hello LCD”); // Displays Hello LCD message at LCD module
Result :

H e l

W i r

l o o L C D b o a

i n g I / b o b o

r

O t dR

r d r

Example 4-2
lcd(“abcdefghijklmnopqrstuvwxyz”);
// Display string. If over 16 charactes, the next character will
// show on the second line automatically.
Result :

a b c

q r s

d e f g h i k l m

t u v w x z o b o

j

y t dR

n o p

32 l Robo-128 Wiring I/O Mobile robot

Example 4-3
lcd(“Value: %d unit “,518); // Display message with number date (518)
Result :

V a l

q r s

u e : g 5 1 k u n

t u v w x z o b o

8

y t dR

i t p

Example 4-4
lcd(“Value: %d “,analog(4));
// Display analog value from anlog port 4 (PA4)
Result :

V a l

q r s

u e : g x x k u n

t u v w x z o b o

x

y t dR

i t p

therefore xxx as reading value 0 to 1023

Example 4-5
char c_test=’j’;
lcd(“abcd%cxyz”,c_test);
// Display character j with any message
Result :

a b c

q r s

d j x y z x k u n

t u v w x z o b o

x

y t dR

i t p

Robo-128 Wiring I/O Mobile robot l 33

Example 4-6

lcd(“Value: %f “,125.450);
// Display message with floating number 3 digit
Result :

V a l

q r s

u e : g 1 2 . 4 5

t u v w x z o b o

5

y t dR

0 t p

Example 4-7
lcd(“count1: %d #ncount2: %d”,12,48);
// Display message with 2 control code and special key #n
// for moving all message after #n to line 2 or bottom line of
// LCD screen
Result

c o u

c o u

n t 1 : 1 1 . 4 5

n t 2 : x 8 o b o

2

4 t dR

0 t p

4.2 sleep.h : Delay time library
This library file supports all instructions for time delaying. This library must be

included at the top of the program with the command #include as follows :

#include <sleep.h> or #include <robot.h>

The important function is sleep . It delay time in millisecond unit.

Syntax

void sleep(unsigned int ms)
Parameter

ms - Set delay time in millisecond unit. The value is 0 to 65,535

Example 4-8
sleep(20); // Dealy 20 miliisecond
sleep(1000); // Delay 1 second

34 l Robo-128 Wiring I/O Mobile robot

4.3 in_out.h : Input/Outp port library
This library file supports all instructions for readind and writing data to digital port of

controller board. This library must be included at the top of the program with the command
#include as follows :

#include <in_out.h> or #include <robot.h>

4.3.1 in
Read data from the specific digital port

Syntax
char in(x)

Parameter
x - Choose digital port number. it is 0 to 50

Return value
0 or 1

Example 4-9
char x; // Declare x variable for keeping reading input data

x = in(49); // Read port 49 and store data to x variable.
Example 4-10

char x; // Declare x variable for keeping reading input data

x = in(50); // Read port 50 and store data to x variable.

4.3.2 out
Write or send the data to the specific digital port

Syntax
out(char _bit,char _dat)

Parameter
_bit - Choose digital port number. it is 0 to 50

Example 4-11
out(43,1); // Write port 43 with logic “1”

out(45,0); // Write port 45 with logic “0”

4.3.3 sw1_press
This function loops to check the SW1 pressing. It returns value after switch is released.

Syntax
void sw1_press()

Example 4-12
................
sw1_press(); // Wait until the SW1 is pressed and released
................

Robo-128 Wiring I/O Mobile robot l 35

4.3.4 sw2_press
This function loops to check the SW2 pressing. It returns value after switch is released.

Syntax
void sw2_press()

Example 4-13
..................

Sw2_press(); // Wait until the SW2 is pressed and released

.................

4.3.5 sw1
This function check the SW1 pressing in any time.
Syntax

char sw1()
Return value

“0” - SW1 is pressed

“1” - SW1 is not pressed

Example 4-14
char x; // Declare x variable for keeping the value

x = sw1(); // Get SW1 status and store to x variable

4.3.6 sw2
This function check the SW2 pressing in any time.
Syntax

char sw2()
Return value

“0” - SW2 is pressed
“1” - SW2 is not pressed

Example 4-15
char x; // Declare x variable for keeping the value

x = sw2(); // Get SW2 status and store to x variable

36 l Robo-128 Wiring I/O Mobile robot

4.4 analog.h : Analog port library
This library file supports all instructions for reading the analog input port of Robo-128

controller board. This library must be included at the top of the program with the command
#include as follows :

#include <analog.h> or #include <robot.h>

4.4.1 analog
This gets digital data from the analog to digital converter module of any analog

port; ADC0 to ADC7.

Syntax

unsigned int analog(unsigned char channel)
Parameter

channel - Analog input (ADC0 to ADC7)

Return value

Digital data from analog to digital converter module. The value is 0 to 1023 (in
decimal)

4.4.2 knob
This function gets data from ADC7 port. This port isconnected with variable resistor

on-board. It is called KNOB.

Syntax

unsigned int knob()
Return value

Digital data from analog to digital converter module. The value is 0 to 1023 (in
decimal)

Example 4-16
int val=0; // Declare variable to keep the converted data
val = analog(2); // Get data from analog input ch. 2 (ADC2)

// and store data to val variable.
Example 4-17

int val=0; // Declare variable to keep the converted data
val = knob(); // Get data from analog input ch. 7

// (ADC7 or KNOB) and store data to val
// variable

Robo-128 Wiring I/O Mobile robot l 37

4.5 motor.h
This library file supports all instructions for driving and controlling 6 DC motor outputs

of Robo-128 controller board. This library must be included at the top of the program with
the command #include as follows :

#include <motor.h> or #include <robot.h>

4.5.1 motor
It is DC motor driving function.

Syntax
void motor(char _channel,int _power)

Parameter

_channel - DC motor output of Robo-128; value is 0 to 5

_power - Power output value; it is -100 to 100

If set _power as positive value (1 to 100); motor is driven one direction.

If set _power as negative value (-1 to -100); motor is driven opposite direction.

If _power as 0; motor is stop. This value is not recommended. Use motor_stop
function to stop motor better.

Example 4-18
motor(1,60); // Drive motor ch.1with 60% of maximum power

motor(1,-60); // Drive motor ch.1with 60% of maximum power and turn back
direction.

Example 4-19
motor(2,100); // Drive motor ch.2 with maximum power

4.5.2 motor_stop
This function is driving off a motor or stop.

Syntax
void motor_stop(char _channel)

Parameter

_channel - DC motor output of Robo-128; value is 0 to 5 and all (for driving off all
channels)

Example 4-20
motor_stop(1); // Stop motor ch.1

motor_stop(4); // Stop motor ch.4

Example 4-21

motor_stop(ALL); // All motor are stop.

38 l Robo-128 Wiring I/O Mobile robot

4.6 servo.h : Servo motor library
This library file supports all functions for controlling 8 servo motor outputs of Robo-

128. This library must be included at the top of the program with the command #include
as follows :

#include <servo.h> or #inclue <robot.h>

4.6.1 servo
This is function of setting servo motor position.

Syntax
void servo(unsigned char _ch,unsigned int _pos)

Parameter

_ch - Servo motor output 8 to 15

_pos - Position value 0 to 180

4.6.2 servo_stop
This is stop servo motor function.

Syntax
void servo_stop(char _ch)

Parameter
_ch - Servo motor output 8 to 15 and all for stop all channel.

4.6.3 servo_read
This is function of servo motro position reading.

Syntax
int servo_read(char _ch)

Parameter
_ch - Servo motor output 8 to 15

Return value
The current position of servo motor shaft

4.6.4 servo_get_status
This is servo motor output status checking function.

Syntax
int servo_get_status(char _ch)

Parameter

_ch - Servo motor output 8 to 15

Return value
- “1” - The selected servo motor output is operated.

- “0” - The selected servo motor output is not operated.

Robo-128 Wiring I/O Mobile robot l 39

4.7 sound.h : Sound library
This library file supports all functions for sound generating of Robo-128. This library

must be included at the top of the program with the command #include as follows :

#include <sound.h> or #inclue <robot.h>

4.7.1 beep
It is beep sound generating function. The beep frequency is 500Hz and 100

millisecond duration time.

Syntax
void beep()

4.7.2 sound
This is programmable sound generating function.

Syntax
void sound(int freq,int time)

Parameter

freq - Set frequency with value 0 to 32,767

time - Set duration time in millisecond unit from 0 to 32,767
Example 4-22

beep(); // Drives beep sound with 100 millisecond duration

sound(1200,500); // Drives sound with 1200Hz 500 millisecond

4.8 serial.h : Serial data communication library
This library file supports all functions for sending and receiving the serial data via

UART port of Robo-128. This library must be included at the top of the program with the
command #include as follows :

#include <serial.h> or #include <robot.h>

4.8.1 Hardware connection
UART0 port

UART0 port is connected via USB to Serial converter chip; FT232RL. For connecting
with computer, must connect via USB port on Robo-128 controller board. This connector is
same port for downloading.

UART1 port

Connect via RXD1 (port 2) and TXD1 (port 3)

40 l Robo-128 Wiring I/O Mobile robot

4.8.2 uart
This is serial data sending function via UART0 port. The default baudrate is 115,200

bit per second.

Syntax
void uart(char *p,...)

Parameter

p - Type of data. Support the special character for setting display method.

Command Operation

%c or %C Display 1 character

%d or %D Display the decimal value -32,768 to +32,767

%l or %L Display the decimal value -2,147,483,648 to +2,147,483,647

%f or %F Display floating point 3 digits

\r Set the message left justify of the line

\n Display message on the new line

4.8.3 uart_set_baud
This is baud rate setting function for UART0.

Syntax
void uart_set_baud(unsigned int baud)

Parameter

baud - Baud rate of UART0 2400 to 115,200
Example 4-23

uart_set_baud(4800); // Set baud rate as 4,800 bit per second

4.8.3 uart_available
This is receiveing data testing function of UART0.

Syntax
unsigned char uart_available(void)

Return value

- “0” : no data received

- more than 0 : received character
Example 4-24

char x =uart_available();

// Check the recieving data of UART0.
// If x value is more than 0; it means UART0 get any data.
// Read it by using uart_getkey function in the order next immediately.

Robo-128 Wiring I/O Mobile robot l 41

4.8.4 uart_getkey
This is data reading function from receiver’s buffer of UART0

Syntax

char uart_getkey(void)
Return value

- “0” : no data received
- data : received character in ASCII code

Example 4-25

#include <robot.h> // Get function

void setup()

{

}

void loop() // Main loop

{

if(uart_available()) // Check incoming data

{

if(uart_getkey()==’a’) // Is key ‘a’ pressed ?

{

lcd(“Key a Active!”); // Display message when get ‘a’ key already

sleep(1000); // Delay 1 second

}

else

{

lcd(“#c”); // Clead display

}

}

}

Note : Default baud ratre of UART library is 115,200 bit per second. Data format
is 8-bit and no parity.

42 l Robo-128 Wiring I/O Mobile robot

4.8.5 uart1
This is serial data sending function via UART1 port. The default baud rate is 9,600 bit

per second.

Syntax
void uart1(char *p,...)

Parameter

p - Type of data. Support the special character for setting display method. See

details in uart0 function.

4.8.6 uart1_set_baud
This is baud rate setting function for UART1.

Syntax
void uart1_set_baud(unsigned int baud)

Parameter

baud - Baud rate of UART0 2400 to 115,200
Example 4-26

uart1_set_baud(19200); // Set baud rate as 19,200 bit per second

4.8.7 uart1_available
This is receiving data testing function of UART0.

Syntax
unsigned char uart1_available(void)

Return value

- “0” : no data received

- more than 0 : received character

Example 4-27
char x =uart1_available(); // Check the receiving data of UART1.

4.8.8 uart1_getkey
This is data reading function from receiver’s buffer of UART1.

Syntax

char uart1_getkey(void)
Return value

- “0” : no data received
- data : received character in ASCII code

Robo-128 Wiring I/O Mobile robot l 43

4.9 Digital compass library
It is compass.h file. This library file is not included in robot.h library file. Must include

the specific library file before using.

This library file supports all functions for interfacing the HMC6352 digital compass of
Robo-128. This library must be included at the top of the program with the command
#include as follows :

#include <compass.h>

4.9.1 compass_read
This reads the angle of the HMC6352 digital compass.

Syntax

int compass_read()
Return value

Angle value 0 to 359 defree

4.9.2 compass_set_heading
This is reference angle setting function. With this function, the current angle that

read from digital compass is set to 0 degree reference.

Syntax

void compass_set_heading()
4.9.3 compass_read_heading

This is reference angle reading function. Use this function after set the new reference
angle from compass_set_heading function.

Syntax

int compass_read_heading()
Return value

- 1 to 180 : positive angle (clock wise direction) of digital compass.

- -1 to -180 : negative angle (Counter-Clockwise direction) of digital compass.

108 l Robo-128 Wiring I/O Mobile robot

Code example is as follows.
unsigned char * m; // Declare pointer variable
int R_MEAN = 33; // Set the mean of red color of the target object
int G_MEAN = 67; // Set the mean of green color of the target object
int B_MEAN = 161; // Set the mean of blue color of the target object
.......................
m = cam_track_color(R_MEAN-30,R_MEAN+30,G_MEAN-30,G_MEAN+30,B_MEAN-

30,B_MEAN+30);
After that, Developers can read value from m[0], to m[7] to convert to array

data type. Therefore :

m[0] contains the x position of middle mass (mx). This value indicates the
trend that target object on the left or right side of the camera module.

- If the target object in front of camera modules, the value is 40.

- If the target object is left of camera modules, the value is lower than 40.

- If the target object is right of camera modules, the value is higher than 40.

m[1] contains the y position of middle mass (my). This value indicates the
trend that target object on the top or bottom of the camera module.

- If the target object in front of camera modules, value is 71.

- If the target object is top of camera modules, value is lower than 71.

- If the target object is bottom of camera modules, value is higher than 71.

m[2] contains the x1 position; the left edge position in x axis

m[3] contains the y1 position; the left edge position in y axis

m[4] contains the x2 position; the right edge position in x axis

m[5] contains the y2 position; the right edge position in y axis

m[6] contains the number of pixel in track region

m[7] contains the confidence value. The maximum is 255. With this valus is
more, it has more confident that the target color. This value may also be used as indicators
of distance to the target object.

Note : Almost get only m[0] and m[7] to track the color of target object. such as
the color of opposite goal in osccer robot competition.

7.2.4 MID_X and MID_Y constant
The camera moduel of ZX-CCD has 80 x 143 pixel resolution. The MID_X is middle

positon of x axis value. The value is 40. The MID_Y is middle position of y axis value. It is
equal 71.

Robo-128 Wiring I/O Mobile robot l 109

Experiment 13 : Simple interfacing with ZX-CCD

This experiment demonstrates the ZX-CCD interfacing with Robo-128 to track the
color composition of the target object and displays the mean value on the LCD screen.
You will require a piece of 30 x 30cm. blue paper and yellow paper to represent the
target object.

Why do we use the blue and yellow paper ? In the soccer robot competition, they
define the color of goal of each side as BLUE and YELLOW. Thus, the blue and yellow color
tracking is Robo-128’s task in a soccer competition. The first step of this task is getting the
mean value of blue and yellow object from ZX-CCD.

From this experiment, ZX-CCD is installed in front of the Robo-128. Connect Tx pin to
RX port of Robo-128 and Rx pin to Tx port of Robo-128.

L13.1 Create a new sketch file and save it as cam_01. Type in the code following the
Listing L13-1.

L13.2 Compile and upload the sketch file to Robo-128 robot.

L13.3 Set the blue paper in front of the robot and far about 5 to 10 cm.

M e a

3 3 ,

n P o f e R B o a

6 7 , 1 6 b o b o

G

1 t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9V
 B

AT
T.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
A

RT

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

Blue paper

5 to 10 cm.

110 l Robo-128 Wiring I/O Mobile robot

L13.4 Run the code.

Robo-128’s LCD shows message

Mean of RGB

RRR,GGG,BBB

Therefore

RRR is the mean value of red composition of the object

GGG is the mean value of green composition of the object

BBB is the mean value of blue composition of the object

With blue paper testing, BBB value is highest of all values.

#include <robot.h>
#include <cam.h> // Include ZX-CCD library file
unsigned char * m; // Declare pointer variable to access the ZX-CCD
void setup()
{

cam_init(); // Initial the ZX-CCD operation
}
void loop()
{

m = cam_get_mean();
// Get the mean value of the target object from ZX-CCD

lcd(“Mean of RGB #n%d,%d,%d “,m[0],m[1],m[2]);
// Displays RGB mean value on the lower line of LCD screen

}

Listing L13-1 : cam_01.pde file; the C/C++ code of Wiring for getting RGB
data from ZX-CCD of the Robo-128

Robo-128 Wiring I/O Mobile robot l 111

R C M

W i r

- P o w e r b o a

i n g I / b o b o

r

O t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY L EVEL15141312111098

SERVO PORT

7.
2-

9V
 B

A
T

T
.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
A

R
T

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

L13.5 Change the blue paper to yellow paper. Record the RRR, GGG and BBB values
from the ZX-CCD.

M e a

1 2 8

n P o f e R B o a

, 1 8 0 , 1 o b o

G

3 t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9V
 B

AT
T.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
A

RT

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

Yellow paper

5 to 10 cm.

The result value of RRR and GGG is higher than BBB value. Because yellow color
has red and green color composition.

These are some examples of tracking the blue and yellow object.

Object Red composition Green composition Blue composition

Blue paper 33 67 161

Yellow paper 128 180 31

112 l Robo-128 Wiring I/O Mobile robot

Experiment 14 : Blue and Yellow color tacking

Experiment 14.1 - Blue object tracking
This experiment presents an example of C/C++ programming to control the Robo-

128 to detect the blue object and displays the mean value to LCD screen. The interesting
value are middle mass value and confidence value.The condition of blue color tracking
are R_MEAN ±30, G_MEAN±30 and B_MEAN±30. The mean value of each composition are
get from previous experiment as follows :

Object Red composition Green composition Blue composition
Blue paper 33 67 161

Yellow paper 128 180 31

The hardware connection still same the experiment 13.

L14.1.1 Create a new sketch file and save as cam_02. Type in the code following the
Listing L14-1.

#include <robot.h>
#include <cam.h> // Include ZX-CCD library file
unsigned char * m; // Declare pointer variable to access the ZX-CCD
unsigned char conf=0; // Declare the confidence vairable for target

// color (it is blue in this code)
unsigned char mx=0; // Declare the middle mass variable
int R_MEAN = 33; // Set the mean value of red color
int G_MEAN = 67; // Set the mean value of green color
int B_MEAN = 161; // Set the mean value of blue color
void setup()
{

cam_init(); // Initial ZX-CCD
}
void loop()
// Detect the target object by setting condition as
// R_MEAN+/-30, G_MEAN+/-30 and B_MEAN+/-30
{

m = cam_track_color(R_MEAN-30,R_MEAN+30,G_MEAN-30,G_MEAN+30,B_MEAN-30,B_MEAN+30);
conf = m[7]; // Store the confidence value
mx = m[0]; // Store the middle mass value (mx)
lcd(“Conf: %d #nmx: %d “,conf,mx);

// Display the result at LCD module
}

Listing L14-1 : cam_02.pde file; the C/C++ code of Wiring for deteting the
blue object of the Robo-128

Robo-128 Wiring I/O Mobile robot l 113

L14.1.2 Compile and upload the sketch file to Robo-128 robot.

L14.1.3 Set the blue paper in front of the robot and far about 5 to 10 cm.

L14.1.4 Run the code

Robo-128’s LCD shows message

Conf: aaa

mx: bbb

Therefore

aaa is the confidence value of the target color

bbb is the middle mass value of x axis. This value represents the position of
object in x axis.

L14.1.5 Move the blue paper with 5, 7 and 10cm. from the robot. Observe the robot’s
operation

5cm.

Blue paper

C o n

m x :

f : o 2 5 0 B o a

, 4 0 0 , 1 o b o

G

3 t dR

r d r

7cm.

Blue paper

C o n

m x :

f : o 1 7 5 B o a

, 4 0 0 , 1 o b o

G

3 t dR

r d r

15cm.

Blue paper

C o n

m x :

f : o 1 2 5 B o a

, 4 0 0 , 1 o b o

G

3 t dR

r d r

From testing, the confidence value is high when the target color object near the
sensor and decreade the value when far away.

114 l Robo-128 Wiring I/O Mobile robot

L14.1.6 Shift the blue paper from left to right direction slowly. Observe the mx value.

5cm.

Blue paper

C o n

m x :

f : o 2 5 0 B o a

, 4 0 0 , 1 o b o

G

3 t dR

r d r

5cm.

Blue paper

C o n

m x :

f : o 2 5 0 B o a

, 6 0 0 , 1 o b o

G

3 t dR

r d r

5cm.

Blue paper

C o n

m x :

f : o 2 5 0 B o a

, 8 0 0 , 1 o b o

G

3 t dR

r d r

The middle mass value of x axis (mx) is increasing until it reaches 40. The object
position is center-front of the robot. The mx value still increaase following the object shift
right out of sensor range. The maximum value is 80

L14.1.7 Change the blue paper to yellow and test again.

The result is both value (conf and mx) near 0. Because the yellow color is more
different from blue color.

Experiment 14.2 - Yellow object tracking
This experiment is similar the previous experiment. Change the color target from

blue to yellow.

L14.2.1 Create a new sketch file and save as cam_03. Type in the code following the
Listing L14-3

L14.2.2 Compile and upload the sketch file to Robo-128 robot.

L14.2.3 Run the code

Robo-128’s LCD shows message

Conf: aaa

mx: bbb

Therefore

aaa is the confidence value of the target color

bbb is the middle mass value of x axis. This value represents the position of
object in x axis.

Robo-128 Wiring I/O Mobile robot l 115

R C M

W i r

- P o w e r b o a

i n g I / b o b o

r

O t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY L EVEL15141312111098

SERVO PORT

7.
2-

9V
 B

A
T

T
.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
A

R
T

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

#include <robot.h>
#include <cam.h> // Include ZX-CCD library file
unsigned char * m; // Declare pointer variable to access the ZX-CCD
unsigned char conf=0; // Declare the confidence vairable for target

// color (it is yellow in this code)
unsigned char mx=0; // Declare the middle mass variable
int R_MEAN = 128; // Set the mean value of red component for yellow
int G_MEAN = 180; // Set the mean value of green component for yellow
int B_MEAN = 31; // Set the mean value of blue componnet for yellow
void setup()
{
 cam_init(); // Initial ZX-CCD
}
void loop()
{

// Detect the target object by setting condition as
// R_MEAN+/-30, G_MEAN+/-30 BÁ_MEAN+/-30
m = cam_track_color(R_MEAN-30,R_MEAN+30,G_MEAN-30,G_MEAN+30,B_MEAN-30,B_MEAN+30);
conf = m[7]; // Store the confidence value
mx = m[0]; // Store the middle mass value (mx)
lcd(“Conf: %d #nmx: %d “,conf,mx);

// Display the result at LCD module
}

Listing L14-2 : cam_03.pde file; the C/C++ code of Wiring for deteting the
yellow object of the Robo-128

L14.2.4 Move the yellow sheet with 5, 7 and 10cm. from the robot. Observe the robot’s
operation.

From the testing, the confidence value is high when the target color object near
the sensor and decreae the value when far away.

L14.2.5 Shift the yellow sheet from left to right direction slowly. Observe the mx value.

The middle mass value of x axis (mx) is increasing until it is 40 the object position is
center-front of the robot. the mx value still increaase following the object shift right out of
sensor range. The maiimum value is 80

L14.2.6 Change the yellow sheet to blue and test again.

The result is both value (conf and mx) near 0. Because the blue color is more different
from yellow color.

116 l Robo-128 Wiring I/O Mobile robot

Experiment 15 : Blue navigator robot

This experiment demonstrares the example of C/C++ programming to control the
Robo-128’s monement by tracking the blue object. There is 3 conditions as follows :

1. The robot must attempt to move towards the blue paper on the front of the
ZX-CCD.

2. If the blue paper is on the left or right of the ZX-CCD camera module, the
robot must turn around to find a blue sheet.

3. If cannot found the blue sheet, robot must stop.

L15.1 Create a new sketch file and save as robot_cam_detect_blue. Type in the code
following the Listing L15-1.

L15.2 Compile and upload the sketch file to Robo-128 robot.

L15.3 Place in front of the robot to the direction under test.

L15.4 Run the code

Robo-128’s LCD shows message

SW1 Press

L15.5 Set the blue sheet in front of the robot and far about 5 to 10 cm.

L15.6 Press the SW1 and observe the robot’s movement.

Robo-128 moves forward to the blue sheet.

M e a

3 3 ,

n P o f e R B o a

6 7 , 1 6 b o b o

G

1 t dR

r

0
1

2
3

4
5

MOTORSERVO

BA T TER Y L EV EL15141312111098

S ER VO PO RT

7.
2-

9V
 B

AT
T.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 ADC041 ADC142 ADC243 ADC3 ST
AR

T

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

Blue paper

Robo-128 Wiring I/O Mobile robot l 117

#include <robot.h>
#include <cam.h> // Include ZX-CCD library file
unsigned char * m; // Declare pointer variable to access the ZX-CCD
unsigned char conf=0; // Declare the confidence vairable for target color (blue)
unsigned char mx=0; // Declare the middle mass variable
int R_MEAN = 33; // Set the mean value of red component for blue
int G_MEAN = 67; // Set the mean value of green component for blue
int B_MEAN = 161; // Set the mean value of blue component for blue
void spin_left(int p) // Spin left function
{

motor(0,p); // Drives the front-left motor backward by p power
motor(1,p); // Drives the back wheel motor to right direction by p power
motor(2,p); // Drives the front-right motor forward by p power

}
void spin_right(int p) // Spin right function
{

motor(0,-p); // Drives the front-left motor forward by p power
motor(1,-p); // Drives the back wheel motor to left direction by p power
motor(2,-p); // Drives the front-right motor backward by p power

}
void forward(int L,int R)// Move forward function
{

motor(0,-L); // Drives the front-left motor forward by L power
motor(1,0); // Stop the back wheel motor
motor(2,R); // Drives the front-right motor forward by R power

}
void setup()
{
 cam_init(); // Initial ZX-CCD
 lcd(“SW1 Press!”); // Display message for pressing SW1

sw1_press(); // Wait until the SW1 is pressed
 }
void loop()
{ // Detect the target by setting condition as R_MEAN+/-30, G_MEAN+/-30 BÁ_MEAN+/-30

m = cam_track_color(R_MEAN-30,R_MEAN+30,G_MEAN-30,G_MEAN+30,B_MEAN-30,B_MEAN+30);
conf = m[7]; // Store the confidence value
mx = m[0]; // Store the middle mass value (mx)
if(conf>20) // Detect blue ?
{

if(mx<MID_X-5) // Blue object is on the left ?
{

spin_left(30); // If yes, spin left the robot to face the object.
}
else if(mx>MID_X+5) // Blue object is on the right ?
{

spin_right(30); // If yes, spin right the robot to face the object
}
else // The obejct in front of the robot
{

forward(80,80); // Move forward to object
}

}
else // Do not detect the object
{

motor_stop(ALL); // Robot stop
}
sleep(2); // Delay for ZX-CCD

}

Listing L15-1 : robot_cam_detect_blue.pde file; the C/C++ code of Wiring for
Robo-128 to move follows the blue object

118 l Robo-128 Wiring I/O Mobile robot

L15.7 Shift the blue sheet from left to right direction of ZX-CCD. Observe the robot’s operation.

The Robo-128 will spin to follows the blue sheet.

R C M

W i r

- P o w e r b o a

i n g I / b o b o

r

O t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9
V

BA
TT

.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 ADC446 ADC640 A DC041 ADC142 A DC 243 ADC3 S
TA

RT

+ - +

-
S

ON

45 A DC 5

d r

USB DATA

E2

R ESET

Blue paper

R C M

W i r

- P o w e r b o a

i n g I / b o b o

r

O t dR

r

0
1

2
3

4
5

MOTORSERVO

BATTERY LEVEL15141312111098

SERVO PORT

7.
2-

9
V

BA
TT

.

4850SW249SW1ADC7KNOB

TWI UART1
0 SCL 1 SDA 2 RX1 3 TX1

44 A DC 446 ADC640 ADC041 A DC 142 ADC243 A DC 3 ST
A

RT

+ - +

-
S

ON

45 ADC5

d r

USB DATA

E2

RESET

Blue paper

L15.7 Move the blue sheet far from the Robo-128 or to back of the robot. Observe the
robot’s operation.

Robo-128 stops This is becasue the blue sheet is out of range.

Robo-128 Wiring I/O Mobile robot l 119

120 l Robo-128 Wiring I/O Mobile robot

