Robo-128
Wiring I/0O mobile robot

the autonomous robot
programming with C/C++

Activity manual
version 1.0

(c) Innovative Experiment Co. ,Ltd.
www.inex.co.th
www.inexglobal.com

i
INNOVATIVE EXPERIMENT

http://www.inex.co.th
http://www.inexglobal.com

2 1 Robo-128 Wiring I/0 Mobile robot

Credits

RBX-128 Robot controller board are trademarks of Innovative Experiment Co., Ltd.
AVR, Atmel, Atmel logo, AVR Studio are registered trademarks of Atmel Corporation.
WInAVR is trademark of SourceForge, Inc.

AVR-GCC is copyright of Free Software Foundation, Inc.

Wiring is an open project initiated by Hernando Barragan (Universidad de Los Andes,
Architecture and Design School). Wiring started at the Interaction Design Institute Ivrea
in Italy and it is currently developed at the Universidad de Los Andes in Colombia.

FTDI is a trademark of Future Technology Devices Intl Ltd.
Microsoft, Windows are registered trademarks of the Microsoft Corporation.

Windows 2K, Windows XP, and Windows Vista are registered trademarks of the Microsoft
Corporation.

All product and service names mentioned herein are the trademarks of their respective
owners.

Robo-128 Wiring I/0O Mobile robot I 3

Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

RODO-128 INTOAUCTION.......coiieiie ettt 5
RODO-128 DEeVElOPMENLLOOIS........cc.cueeiereireereeieeee e 16
Wiring IDE and Skethc Uploading..........ccoveeiiiiiiiin e 21
RODO-128 LIDrary fil.......c.oeeeieie e e 30
RODbO0-128 hardware eXperment..........ccceeieeinieineeee e 44
RODO-128 MOVEMENL........ooiiiiiiece e e 66

Remote colorsensing of RODO-128............cccoeiinieniinieeeee e 92

16 1 Robo-128 Wiring I/0 Mobile robot

Chapter 2
Robo-128 Development tools

Robo-128 supports all developent tools including assembly, basic and C language.
However, we suggest using the C/C++ programming tool for Robo-128. It is called Wiring
(www.wiring.org.co). Wiring is an open source programming environment and
electronics i/o board for exploring the electronic arts, tangible media, teaching and
learning computer programming and prototyping with electronics. It illustrates the
concept of programming with electronics and the physical realm of hardware control
which are necessary to explore physical interaction design and tangible media aspects.

Wiring is an open project initiated by Hernando Barragan (Universidad de Los
Andes Architecture and Design School). Wiring started at the Interaction Design Institute
Ivrea in Italy and it is currently developed at the Universidad de Los Andes in Colombia.

Wiring builds on Processing, an open project initiated by Ben Fry (Broad Institute)
and Casey Reas (UCLA Design Media Arts). Processing evolved from ideas explored in
the Aesthetics and Computation Group at the MIT Media Lab.

The operation system that supported is :
1 Mac OS X 10.4 (Both Intel and PowerPC CPU)
1 Windows XP and Vista

1 Fedora Core 6 (Linux)

This chapter describes about introduction to Wiring. Begin with Installation, explain
about Wiring IDE components and Menu bar details.

http://www.wiring.org.co)

Robo-128 Wiring I/0O Mobile robot I 17

2.1 Software installation

(1) Insert CD-ROM of Robo-128 to CD-ROM drive. Click on the file Wiring0023
Setup.exe. The welcome window is appeared.

Jo&d

. Welcome to the Wiring 0023
Setup Wizard
= This will install Winng 0023 on your computer.

It iz recommended that vou cloze all other applications before
caontinuing.

Click Mext to continue, or Cancel to exit Setup.

[Next>R4[Cancel |

(2) Click on the OK button in each intallation step until installation is completed.

(3) This installation includes Wiring software and USB driver for Robo-128 controller
board.

(4) Run software by select menu Start & All Programs & Wiring & Wiring .

% sketch_mar16a | Wiring 0023 =]

Fille Edit Sketch Tools Help

sketch_mariBa §

void loop()
{

i

18 1 Robo-128 Wiring I/0O Mobile robot

2.2 Checking the USB Serial port for Robo-128

After installing Wiring IDE and USB driver, the next step is to check the USB serial
port or virtual COM port that was created by USB driver.

(1) Plug the USB cable between Robo-128 with USB port and turn-on
(2) Wait until USB indicator is on.

(3) Click on the Start button and select to Control Panel

(4) Double-click on System icon

(5) Select tab Hardware and click on the Device Manager button.

o =

System Properties W

| Syster Restare || Automatic Updates Rermnte |
| General || Computer Mame | Hardware Advanced

Device Manager

The Device Manager lists all the hardware devices installed
- on your computer. Use the Device Manager to change the

properties of any device.
Device Manager §

@ Comnect with U © LCD displays Run mode message.

(& rocs

Figure 2-1 : Checking USB serial port of Robo-128

Robo-128 Wiring 1/0O Mobile robot I 19

(6) Check the hardware listing at Port. You should see USB Serial port . Check the
position. Normally it is COM3 or higher (for example; COM10). You must use this COM
port with the Wiring IDE software.

Device Manager E]@

File Action Wiew Help
& B
= l PC ~

+ j Compuker
+|-age Disk drives
+ @ Display adapters
+-. 4 DYD/CD-ROM drives
+-i=) Floppy disk controllers
+-i=% IDE ATA[ATAPI controllers
+|-#g9 IEEE 1394 Bus host contrallers
+-z Keyboards
¥ _j Mice and ather pointing devices
+- s Modems
+ @ IManitar s
+- B8 Metwork adapters
=+ & Ports (COM & LPT)
r;y‘ Communications Port (COM1Y
Communications Port (COM2)
7 ECP Prinker Port (LPT1)
7 UsE Serial Port (COM10)
+-%88 Processors %
+-8), Sound, video and game controllers [V]

2.2 Robo-128 with Wiring IDE interfacing

(1) Open Wiring IDE by double-click on the file wiring.exe in the folder Wiring-0023
(number of version could be changed) Wait for a while. The main window of Wiring IDE
will appear.

B sketch_mar16a | Wiring 0023 =[5

File Edit Sketch Tools Help

sketch_marlGa §

void loop()
{

}

20 1 Robo-128 Wiring I/0O Mobile robot

(2) Select menu Tools & Serial Port to choose the USB serial port of Robo-128. It is
COM10

-
(sketch_mar16a | Wiring 0023 =Joed

File Edit 3Sketch Tools Help
I .o Format Chrl+T

Archive Sketch
e alaE| Fix Encoding & Reload

woid seup 0 Firnwware version

{ Serial Port

i

woid loopi)

Must do this step for every new connection of the Robo-128 with Wiring IDE

(3) Select the bootloader firmware of Wiring I/0 hardware which is connected
with Wiring IDE by select menu Tools & Firmware version a 2.x

@ sketch_mar16a | Wiring 0023 =&
File Edit Sketch Tools Help

Auko Format Chrl+T
Archive Sketch
e N el Fix Encoding & Reload
— T Firmware wetsion . .
i Setial Park bW 2

'

Now Robo-128 is ready for interfacing and code development with the Wiring
IDE.

i
INNOVATIVE EXPERIMENT

Robo-128 Wiring I/0O Mobile robot I 21

Chapter 3
Wiring IDE and Sketch uploading

Wiring is Open Source Software. The PDE (Processing Development Environment)
is released under the GNU GPL (General Public License). The export libraries (also known
as ‘core’) are released under the GNU LGPL (Lesser General Public License).

Wiring IDE is designed a simple and usable editor for writing and running programs.
The Wiring Environment (Integrated Development Environment or IDE) has a text editor
and compiler for writing programs for the Wiring 1/0 Board. See the figure below. When
the “run” button is clicked, the program compiles. The toolbar provides functionality for
compiling programs, creating a new sketch, opening, saving, and exporting to the I/0
Board. Additional commands are available through the menus. The message area gives
feedback while saving and exporting and also shows the locations of errors when
programs are compiled. The text area presents messages and can be written from the
I/0 Board using with the print() programming function.

Ll Wiring - 0017 Alpha - ol x|
Menu bar—srie Edit sketch Tools Help

sketch_f

Text editor area——

4 .

Message area

Text area/
Serial Terminal

22 1 Robo-128 Wiring I/0O Mobile robot

3.1 Menu bar

It includes the File, Edit, Sketch, Tools and Help menu. It works with the active
current sketch tab only.

3.1.1 File

JIEN Ecit Sketch Tools Help

[P Cirinl

Open... Ctel+

Sketchbook

Save Ciri+= lzd_pririt

Save As.. Ciri+Shift+S advancedlo

Upload to 112 Board Ctrl+U aganatudio. comns: analog

Preferences Clrl+, hall_senzar

it CHel+3 LED) connected mators led_hlink=z
S —TrrorE T T rre—a 000 millisecond)

: : :] zoftware lEd_swing
Ff Note in the circuit the LED it has a pco . .
titnitig Parallax:Ping_reader

F4 [short leqg), if the LED doesn't turn 0K

Library-LiguiclCrystal segment_display

/¢ Created 2 December 2003 Liborary-Matri: witch
#f RBewised 1 May 2007 Library-=lide transmizzive_aptical
Library-Serial

int ledPin

o;: /4 LED connmected Library-Servo pard pin 0

Likraty-Stepper
void setup] Library-yire
{

- w w w w w w wv w willwv w

New (Ctrl+N) or click on the button on the Tools bar : Creates a new sketch,
named as the current date is the format “sketch_YYMMDDa” such as sketch_080407a.

Open (Ctrl+O) or click on the button on the Tools bar. : Gives the option to
open a sketch from anywhere on the local computer or network, the sketchbook, or to
open an example.

Save (Ctrl+O) or click on the button on the Tools bar : Saves the open sketch
in it’s current state.

Save as... (Ctrl+Shift+Q) : Saves the currently open sketch, with the option of
giving it a different name. Does not replace the previous version of the sketch.

Upload to I/0O Board (Ctrl+U) or click on the || button on the Tools bar. : Be
default, exports the program to the Wiring I/0O Board (inthis document is Robo-128
controller board). After the files are exported, the directory containing the exported
files is opened. There is more information about uploading below.

Preferences : Allows you to change some of the ways Wiring works.

Quit (Ctrl+Q) : Exits the Wiring Environment and closes all Wiring windows.

Robo-128 Wiring |/O Mobile robot I 23

3.1.2 Edit

The Edit menu provides a series of commands for editing the Wiring files.

=e(Sketch Tools

it CHFl+
Copy Clrl+C
Paszte Ctri+d
Select &l Cirl+s,
Fird... Cirl+F
Find Mext Ctri+

Undo (Ctrl+2) : Reverses the last command or the last entry typed. Cancel the
Undo command by choosing Edit ? Redo.

Redo (Ctrl+Y) : Reverses the action of the last Undo command. This option is only
available, if there has already been an Undo action.

Cut (Ctrl+X) : Removes and copies selected text to the clipboard (an off-screen
text buffer)

Copy (Ctrl+C) : Copies selected text to the clipboard.

Paste (Ctrl+V) : Inserts the contents of the clipboard at the location of the cursor,
and replaces any selected text.

Select All (Ctrl+A) : Selects all of the text in the file which is currently open in the
text editor.

Find (Ctrl+F) : Finds an occurrence of a text string within the file open in the text
editor and gives the option to replace it with a different text.

Find Next (Ctrl+G) : Finds the next occurrence of a text string within the file open
in the text editor.

24 1 Robo-128 Wiring I/0O Mobile robot

3.1.3 Sketch

The Sketch menu provides a series of commands relate compiling the Wiring files.

==l Tools Help

“erifyiCotmpile Cirl+R
Stop

Shiowy Sketch Folder Crl+k
A File. ..

Impart Library EEFROM
Encoder
Liguidd Crystal
flatriz
GiSlice

Serial

Serva
SoftwareSerial
Sprite

Stepper

Wire

Verify/Compile (Ctrl+R) or click on the @ button on the Tools bar : Verify the
code (compiles the code)

Stop or click on the @ button on the Tools bar : Stops current activity.
Show Sketch Folder: Opens the directory for the current sketch.

Add File : Opens a file navigator. Select a code files to add it to the sketches
“data” directory.

Import Library : Open the included library of Wiring.

3.1.4 Tools

Toolz Wl

Auta Format Ctrl+T
Copy for Discourse
Archive Sketch

Serial Port

Auto Format (Ctrl+7) : Attempts to format the code into a more human-readable
layout. Auto Format was previously called Beautify.

Firmware version : Select the suitable bootloader firmware of Wiring I/0 board.

Serial Port : Allows to select which serial port to use as default for uploading
code to the Wiring I/0O Board or monitor data comming from it. The data coming from
the Wiring 1/0 Board is printed in character format in the text area region of the console.

Robo-128 Wiring I/O Mobile robot I 25
3.1.5 Help

Getting Started
Troukleshooting

Reference

Wiring Hardware

Find in Reference Ctel+Shift+F
Wizt weiring.org.oo Ciel+S

Aot Wiring

Getting Started : Opens the getting started in the default Web browser.
Troubleshooting : Opens the troubleshooting in the default Web browser.

Reference : Opens the reference in the default Web browser. Includes reference
for the language, programming environment, libraries, and a language comparison.

Find in Reference (Ctrl+Shift+F) : Select a word in your program and select “Find
in Reference” to open that reference HTML page.

Visit Wiring.org.co (Ctrl+5) : Opens default Web browser to the Wiring homepage.

About Wiring : Opens a concise information panel about the software.

26 1 Robo-128 Wiring I/0O Mobile robot

3.2 Toolbar

The toolbar provides access to the seven basic functions of Processing: Run,
Stop, New, Open, Save, Export, Serial monitor.

@ Run : Compiles the code
@ Stop : Terminates any activity on the editor
New : Creates a new sketch. In Wiring, projects are called sketches.

Open : Select and load a pre-existing sketch. A menu opens and you
may choose from your own sketchbook, examples, or you can open a sketch from
anywhere on your computer or network.

Save : Saves the current sketch into the Processing sketches folder. If
you want to give the sketch a name other than the current date, you can choose Save
As from the File menu.

oi| Upload to I/0 Board : Exports the current sketch into the sketchbook

and uploads it to the Wiring 1/0 Board (inthis document is Robo-128 controller board).
The directory containing the files is opened.

Serial monitor : Opens a serial port connection to monitor the data

comming from the Wiring I/0O Board, this is very useful for debugging and verification.

3.3 Serial monitor

Wiring IDE has a Serial monitor. It is a serial data communication tool. User can
transmit, receive and show the serial data via this monitor with USB serial port of computer.
In the developed sketch code, must put two imporatant commnands as follows :

1. Serial.begin() : Set the baud rate of serial data communication. Normally the
baud rate value is 9600 bit per second. Must add this command into Setup() of sketchbook.

2. Serial.printin() : Assign the sending message to Serial monitor on the Wiring IDE.

Openning the Serial monitor is very easy. Click on the button at Toolbar. The
message area at the bottom of the main screen will change to the Serial monitor window
following the figure below.

Send

Robo-128 Wiring 1/0O Mobile robot I 27

3.4 How to develop the program

(1) Check the hardware connection and set the Robo-128 to Program mode following
figure 3-1. It is important that the USB serial portis now connected to Robo-128 controller
board and your computer is running the Wiring IDE with all configurations ser properly.

(2) Open the Wiring IDE. Create the new sketch file by clicking on the [[| button

at Toolbar or select from File & New

(3) Type the example code below

#include <robot.h> Il Include main library
int ledPin = 48; II'LED connected to pin 48 (bootloader)
void setup()
|cd("Hello Robotlg Il Title message on LCD
pinMode(ledPin, OUTPUT); /I Sets the digital pin as output
void loop)
digiitaIerte(IedPin, HIGH), // Sets the LED on
delay(1000); Il Waits for a second
dlgilta rite(ledPin, LOW); I/ LED off
delay(1000);
}
© Connect USB port © LCD displays Program mode message.

(4]
gress the STi\RT switc agd hold

th e%o%o | %Istcl)s fogram tr%oS (te
on e R (s setn,
fogrant mode already

ait untl th‘ﬁ
p{ el 5 tume dS ed-on.

Figure 3-1 : How to set the Robo-128 to Proigram mode

28 1 Robo-128 Wiring I/0O Mobile robot

Thi s example code demonstrates the Robo-128 basic operation. An LCD module
displays testing message and LED at port 48 is controlled.

(4) Go to menu File & Save As for saving the new sketch as hello. Now we have
hello.pde in the hello folder.

B sketch_mar16a | Wiring 0023 =Jo&d
File Edit Sketch Tools Help

Mews Ctrl+n

Qpen... Chrl+0

Sketchbook

Examples ' A4 Include wain library -

Close Chrl+H

Save Ctrl+5

Save As... Ctrl+Shife+S . /v Title mezzage on LOD

Uplaad ta Wiring hardware Cerl+0 %/ Sets the digital pin as output

Page Setup Crl+5hift+P

(5) Compile this sketch file by clicking on the @ button at Toolbar ot menu
Sketch & Compile/Verify.

B Hello | Wiring 0023 =JoEd
File Edit Sketch Tools Help
‘erify | Compile %Ctrlﬂil

Schemnatics

Show Sketch Folder Chrl+k
#includg Import Library... ¥ |/ Include main library A
void 52 addFile...

led("Hello Robot!™): #f Title meszage on LCD

If have any error occurs, the error and warning message are shown at
the Message area and Text area following the figure below.

Back to edit the code to fix any error and re-compile again until completely.
The Message area shows Done compiling message following the picture below.

Done compiling.

After done compiling, in the hello folder have the new folder occur. It is
Applet folder. This folder contains C/C++ source code and the output file .hex. for
example as hello.hex, hello.cpp and hello.pde

Robo-128 Wiring 1/0O Mobile robot I 29

(6) Connect the Robo-128 with USB port. Turn-on power. Wait until USB connection
is completely (blue LED at USB is turned-on) .

(7) Press and hold the START button on theRobo-128 controller board 3 seconds.
The LCD module shows Entry program mode message following the figure 3-1.

(8) Click on the |2>i| Upload to Wiring Hardware. Code uploading is started. Wait

until uploading complete. The message Done uploading. RESET to start the new program.
is shown in the status bar of Wiring IDE.

&8 Hello | Wiring 0023 E]@

File Edit Sketch Tools Help

Hello
#include <robot.h> 44 Include main library fad
int ledPin = 48; &4 LED comnnected to pin 48 (bootloader)

vold setup()

{

lod("™Hello Robot!™); S Title message on LCD

pinMode (ledPin, OUTPUT): 44 Bets the digital pin as output
}
wold loop()

{
digitallrite (ledPin, HIGH): #f Bets the LED on
delay (1000 ; J4 Waits for a second
digitalWrite (ledPin, LOW): A4 LED off
delay(l000)

Dione uploading. Resetto start the new

(9) Press the START switch at the Robo-128 controller board again. Robo-128 entry
to Run mode. It executes the code.

LCD module displays message “Hello World!” and LED at port 48 is blinked.

i
INNOVATIVE EXPERIMENT

30 I Robo-128 Wiring I/0 Mobile robot

Chapter 4
Robo-128 Library file

C/C++ program development with Wiring for Robo-128 is supported by robot.h library
file. With this library, user can create the control program for Robo-128 easier and faster.

The sturcture of the robot.h library file is shown below.

robot.h library file for Robo-128 robot
icah motorh
- led <«—¢—» - Motor
3|ee§.n : mgtor_stop
- eep 1 servs% Q/ n
'”J{H‘-” Lol -sevo st %p
- out - SenvoTe d
: sw%_ 1655 -— - SeIvo_get st
- W _BTGSS Serath
'SW% - Uart
-33&%53%
ook ~— | uatethad
analog T
oty | | Clarieede
-sour% - lartt
- lart] putc
-uartl_Et
§ o
-uartljgv ag}J
- Uartl“getkey

Robo-128 Wiring |/0O Mobile robot I 31

4.1 lcd.h : LCD module library

This library file supports all instructions for displaying message and value at the LCD
module on the Robo-128 controller board. This library must be included at the top of the
program with the command #include as follows :

#include <lcd.h> or #include <robot.h>
Main function of this library is lcd

Syntax
void lcd(char *p,...)

Parameter
p - Type of display data. Support the special character for setting display method.
Command Operation
%c or %C Display 1 character
%d or %D Display the decimal value -32,768 to +32,767

%I or %L Display the decimal value -2,147,483,648 to +2,147,483,647

%f or %F Display floating point 3 digits

#c Clear message before next display

#n Display message on the second line (bottom line)
Example 4-1

lcd(“Hello LCD'); [/ Displays Hello LCD message at LCD nodul e

Hello LCD

Example 4-2
| cd(“ abcdef ghi j kl mopqr st uvwxyz”);

Result :

/1 Display string. If over 16 charactes, the next character will
/1 show on the second line autonmatically.

Result :

abcdefghijklImnop
grstuvwxyz

Example 4-3
lcd(“Value: %l unit “,518); // D splay message w th nunber date (518)

Result :

Value: 518 unit

Example 4-4
[cd(“Value: % “, anal og(4));

/1 Display anal og value from anlog port 4 (PA4)

Result :

Value: XxXxXx

therefore xxx asreading value 0 to 1023
Example 4-5
char c_test="j';

| cd(“abcd%xyz”,c_test);
/1 Display character j with any nessage

Result :

abcdjxyz

Robo-128 Wiring |/0O Mobile robot I 33

Example 4-6

[cd(“Val ue: 9% *“,125.450);
/1 Display nessage with floating nunber 3 digit

Result :

Value: 125.450

Example 4-/
[cd(“countl: % #ncount2: 9%l”, 12, 48);
/1 Display nessage with 2 control code and special key #n
/1 for nmoving all nessage after #n to line 2 or bottomline of
/1 LCD screen

Result

countl: 12

count2: 48

4.2 sleep.h : Delay time library

This library file supports all instructions for time delaying. This library must be
included at the top of the program with the command #include as follows :
#include <sleep.h> or #include <robot.h>
The important function is sleep . It delay time in millisecond unit.
Syntax
voi d sl eep(unsigned int ns)
Parameter

ms - Set delay time in millisecond unit. The value is 0 to 65,535

Example 4-8
sl eep(20); /] Dealy 20 miliisecond

sl eep(1000); /1 Delay 1 second

34 1 Robo-128 Wiring I/0 Mobile robot

4.3 in_out.h : Input/Outp port library

This library file supports all instructions for readind and writing data to digital port of
controller board. This library must be included at the top of the program with the command
#include as follows :

#include <in_out.h> or #include <robot.h>

4.3.11in

Read data from the specific digital port
Syntax

char in(x)
Parameter

x - Choose digital port number. itis 0 to 50
Return value

Oorl

Example 4-9
char x; // Declare x variable for keeping reading input data

X = in(49); // Read port 49 and store data to x variable.

Example 4-10
char x; // Declare x variable for keeping reading input data

x = in(50); // Read port 50 and store data to x variable.

4.3.2 out
Write or send the data to the specific digital port

Syntax
out (char _bit,char _dat)

Parameter
_hit - Choose digital port number. it is O to 50

Example 4-11
out(43,1); // Write port 43 with logic “1”
out(45,0); // Write port 45 with logic “0”

4.3.3 swl press

This function loops to check the SW1 pressing. Itreturns value after switchisreleased.

Syntax
void swl press()

Example 4-12

swl_press(); // Wait until the SW1 is pressed and released

Robo-128 Wiring I/O Mobile robot I 35

4.3.4 sw2_press

This function loops to check the SW2 pressing. It returns value after switchis released.
Syntax

void sw2 press()
Example 4-13

4.3.5 swl
This function check the SW1 pressing in any time.
Syntax
char swil()

Return value
“0” - SW1 is pressed
“1” - SW1is not pressed
Example 4-14
char x; // Declare x variable for keeping the value

x =swl(); // Get SW1 status and store to x variable

4.3.6 sw2

This function check the SW2 pressing in any time.
Syntax
char sw2()

Return value

“0” - SW2 is pressed

“1” - SW2 is not pressed
Example 4-15

char x; // Declare x variable for keeping the value

x =sw2(); // Get SW2 status and store to x variable

36 1 Robo-128 Wiring I/0 Mobile robot

4.4 analog.h : Analog port library

This library file supports all instructions for reading the analog input port of Robo-128
controller board. This library must be included at the top of the program with the command
#include as follows :

#include <analog.h> or #include <robot.h>

4.4.1 analog

This gets digital data from the analog to digital converter module of any analog
port; ADCO to ADCY.

Syntax
unsi gned int anal og(unsi gned char channel)

Parameter
channel - Analog input (ADCO to ADCY)
Return value

Digital data from analog to digital converter module. The value is 0 to 1023 (in
decimal)

4.4.2 knob

This function gets data from ADC7 port. This port isconnected with variable resistor
on-board. Itis called KNOB.

Syntax
unsi gned int knob()

Return value

Digital data from analog to digital converter module. The value is 0 to 1023 (in

decimal)

Example 4-16
i nt val =0; /1 Declare variable to keep the converted data
val = analog(2); // Get data fromanalog input ch. 2 (ADC2)

/1 and store data to val variable.

Example 4-17
i nt val =0; /1 Declare variable to keep the converted data
val = knob(); /'l Get data fromanalog input ch. 7

/1 (ADC7 or KNOB) and store data to val
/'l variable

Robo-128 Wiring |/O Mobile robot I 37

4.5 motor.h

This library file supports all instructions for driving and controlling 6 DC motor outputs
of Robo-128 controller board. This library must be included at the top of the program with
the command #include as follows :

#include <motor.h> or #include <robot.h>

4.5.1 motor
Itis DC motor driving function.

Syntax
void notor(char _channel,int _power)
Parameter
_channel - DC motor output of Robo-128; value is 0 to 5
_power - Power output value; it is -100 to 100
If set _power as positive value (1 to 100); motor is driven one direction.
If set_power as negative value (-1 to -100); motor is driven opposite direction.
If _power as 0; motor is stop. This value is not recommended. Use motor_stop

function to stop motor better.

Example 4-18
motor(1,60); // Drive motor ch.1with 60% of maximum power

motor(1,-60); // Drive motor ch.1with 60% of maximum power and turn back
direction.

Example 4-19
motor(2,100); // Drive motor ch.2 with maximum power
4.5.2 motor_stop
This function is driving off a motor or stop.

Syntax
voi d notor_stop(char _channel)

Parameter

_channel - DC motor output of Robo-128; value is 0 to 5 and all (for driving off all
channels)

Example 4-20

motor_stop(1); // Stop motor ch.1
motor_stop(4); // Stop motor ch.4

Example 4-21

motor_stop(ALL); // All motor are stop.

38 1 Robo-128 Wiring I/0 Mobile robot

4.6 servo.h : Servo motor library

This library file supports all functions for controlling 8 servo motor outputs of Robo-
128. This library must be included at the top of the program with the command #include

as follows :

#include <servo.h> or #inclue <robot.h>

4.6.1 servo

This is function of setting servo motor position.

Syntax
voi d servo(unsi gned char _ch,unsigned int _pos)

Parameter
_ch - Servo motor output 8 to 15

_pos - Position value 0 to 180

4.6.2 servo_stop

This is stop servo motor function.

Syntax
voi d servo_stop(char _ch)

Parameter
_ch - Servo motor output 8 to 15 and all for stop all channel.

4.6.3 servo_read

This is function of servo motro position reading.

Syntax
int servo_read(char _ch)

Parameter
_ch - Servo motor output 8 to 15
Return value

The current position of servo motor shaft

4.6.4 servo_get_status

This is servo motor output status checking function.

Syntax

int servo_get status(char _ch)
Parameter

_ch - Servo motor output 8 to 15
Return value

-“1” - The selected servo motor output is operated.

- “0” - The selected servo motor output is not operated.

Robo-128 Wiring |/O Mobile robot I 39

4.7 sound.h : Sound library

This library file supports all functions for sound generating of Robo-128. This library
must be included at the top of the program with the command #include as follows :

#include <sound.h> or #inclue <robot.h>

4.7.1 beep

It is beep sound generating function. The beep frequency is 500Hz and 100
millisecond duration time.

Syntax
voi d beep()

4.7.2 sound

This is programmable sound generating function.
Syntax
void sound(int freq,int tine)
Parameter
freq - Set frequency with value 0 to 32,767
time - Set duration time in millisecond unit from 0 to 32,767

Example 4-22
beep(); // Drives beep sound with 100 millisecond duration

sound(1200,500); // Drives sound with 1200Hz 500 millisecond

4.8 serial.h : Serial data communication library

This library file supports all functions for sending and receiving the serial data via
UART port of Robo-128. This library must be included at the top of the program with the

command #include as follows :

#include <serial.h> or #include <robot.h>

4.8.1 Hardware connection

UARTO port

UARTO port is connected via USB to Serial converter chip; FT232RL. For connecting
with computer, must connect via USB port on Robo-128 controller board. This connector is
same port for downloading.

UART1 port
Connect via RXD1 (port 2) and TXD1 (port 3)

40 1 Robo-128 Wiring I/0 Mobile robot

4.8.2 uart

This is serial data sending function via UARTO port. The default baudrate is 115,200
bit per second.

Syntax
void uart(char *p,...)

Parameter
p - Type of data. Support the special character for setting display method.
Command Operation
%c or %C Display 1 character
%d or %D Display the decimal value -32,768 to +32,767

%Il or %L Display the decimal value -2,147,483,648 to +2,147,483,647
%f or %F Display floating point 3 digits

\r Set the message left justify of the line

\n Display message on the new line

4.8.3 uart_set _baud

This is baud rate setting function for UARTO.
Syntax
void uart_set baud(unsi gned int baud)
Parameter
baud - Baud rate of UARTO 2400 to 115,200
Example 4-23
uart_set baud(4800); // Set baud rate as 4,800 bit per second
4.8.3 uart_available
This is receiveing data testing function of UARTO.

Syntax

unsi gned char wuart_avail abl e(voi d)
Return value

-“0” : no data received

- more than 0 : received character

Example 4-24
char x =uart_available();

// Check the recieving data of UARTO.
// If x value is more than 0; it means UARTO get any data.
// Read it by using uart_getkey function in the order next immediately.

4.8.4 uart_getkey

Robo-128 Wiring I/0 Mobile robot I 41

This is data reading function from receiver’s buffer of UARTO

Syntax
char uart _get key(void)

Return value

- “0” : no data received

- data : received character in ASCIlI code

Example 4-25
#include <robot.h>
void setup()
{
}
void loop()
{
if(uart_available())
{
if(uart_getkey()=="a’)
{
lcd(“Key a Active!™);
sleep(1000);
}
else
{
lcd(“#c™);
}
}

}

// Get function

// Main loop

// Check incoming data

// 1s key ‘a’ pressed ?

// Display message when get ‘a’ key already
// Delay 1 second

// Clead display

Note : Default baud ratre of UART library is 115,200 bit per second. Data format

is 8-bit and no parity.

42 1 Robo-128 Wiring I/0 Mobile robot

4.8.5 uartl

This is serial data sending function via UART1 port. The default baud rate is 9,600 bit
per second.

Syntax
void uartl(char *p,...)

Parameter

p - Type of data. Support the special character for setting display method. See
details in uartO function.

4.8.6 uartl _set baud
This is baud rate setting function for UART1.

Syntax
void uartl set baud(unsigned int baud)

Parameter
baud - Baud rate of UARTO 2400 to 115,200
Example 4-26
uartl _set baud(19200); // Set baud rate as 19,200 bit per second

4.8.7 uartl_available

This is receiving data testing function of UARTO.

Syntax
unsi gned char wuartl_avail abl e(voi d)

Return value
- “0”: no data received
- more than 0 : received character
Example 4-27
char x =uartl_available(); // Check the receiving data of UARTL.
4.8.8 uartl _getkey

This is data reading function from receiver’s buffer of UARTL.

Syntax
char uart1l _get key(void)
Return value

- “0” : no data received
- data : received character in ASCIlI code

Robo-128 Wiring |/O Mobile robot I 43

4.9 Digital compass library

Itis compass.h file. This library file is not included in robot.h library file. Must include
the specific library file before using.

This library file supports all functions for interfacing the HMC6352 digital compass of
Robo-128. This library must be included at the top of the program with the command

#include as follows :

#include <compass.h>

4.9.1 compass _read
This reads the angle of the HMC6352 digital compass.
Syntax

i nt conpass_read()

Return value

Angle value 0 to 359 defree

4.9.2 compass_set_heading

This is reference angle setting function. With this function, the current angle that
read from digital compass is set to 0 degree reference.

Syntax
voi d conpass_set headi ng()

4.9.3 compass_read_heading

This is reference angle reading function. Use this function after set the new reference
angle from compass_set_heading function.

Syntax
i nt conpass_read_headi ng()

Return value
- 1to 180 : positive angle (clock wise direction) of digital compass.

- -1t0 -180 : negative angle (Counter-Clockwise direction) of digital compass.

i
INNOVATIVE EXPERIMENT

108 1 Robo-128 Wiring I/0 Mobile robot

Code example is as follows.
unsi gned char * m /1 Declare pointer variable

int R_.MEAN = 33; Il Set the mean of red color of the target object
int GMEAN = 67; /1 Set the nean of green col or of the target object
int B_MEAN = 161; /1 Set the mean of blue color of the target object

m = cam track_col or (R_VEAN- 30, R_MEAN+30, G MEAN- 30, G_VEAN+30, B_VEAN-
30, B_ MEAN#+30) ;

After that, Developers can read value from m[0], to m[7] to convert to array
data type. Therefore :

m[0] contains the x position of middle mass (mx). This value indicates the
trend that target object on the left or right side of the camera module.

- If the target object in front of camera modules, the value is 40.
- If the target object is left of camera modules, the value is lower than 40.
- If the target object is right of camera modules, the value is higher than 40.

m[1l] contains the y position of middle mass (my). This value indicates the
trend that target object on the top or bottom of the camera module.

- If the target object in front of camera modules, value is 71.
- If the target object is top of camera modules, value is lower than 71.
- If the target object is bottom of camera modules, value is higher than 71.

m[2] contains the x1 position; the left edge position in x axis
m[3] contains the y1 position; the left edge position in y axis
m[4] contains the x2 position; the right edge position in x axis
m[5] contains the y2 position; the right edge position in y axis
m[6] contains the number of pixel in track region

m[7] contains the confidence value. The maximum is 255. With this valus is
more, it has more confident that the target color. This value may also be used as indicators
of distance to the target object.

Note : Aimost get only m[0] and m[7] to track the color of target object. such as
the color of opposite goal in osccer robot competition.

7.2.4 MID_X and MID_Y constant

The camera moduel of ZX-CCD has 80 x 143 pixel resolution. The MID_X is middle
positon of x axis value. The value is 40. The MID_Y is middle position of y axis value. It is
equal 71.

Robo-128 Wiring I/0O Mobile robot I 109

Experiment 13 : Simple interfacing with ZX-CCD

This experiment demonstrates the ZX-CCD interfacing with Robo-128 to track the
color composition of the target object and displays the mean value on the LCD screen.
You will require a piece of 30 x 30cm. blue paper and yellow paper to represent the
target object.

Why do we use the blue and yellow paper ? In the soccer robot competition, they
define the color of goal of each side as BLUE and YELLOW. Thus, the blue and yellow color
tracking is Robo-128’s task in a soccer competition. The first step of this task is getting the
mean value of blue and yellow object from ZX-CCD.

From this experiment, ZX-CCD is installed in front of the Robo-128. Connect Tx pin to
RX port of Robo-128 and Rx pin to Tx port of Robo-128.

L13.1 Create a new sketch file and save it as cam_01. Type in the code following the
Listing L13-1.

L13.2 Compile and upload the sketch file to Robo-128 robot.

L13.3 Set the blue paper in front of the robot and far about 5 to 10 cm.

5to 10 cm.

110 1 Robo-128 Wiring I/0 Mobile robot

#i ncl ude <robot. h>

#i ncl ude <cam h> /1 Include ZX-CCD library file

unsi gned char * m /1 Declare pointer variable to access the ZX-CCD
voi d setup()

{
caminit(); /1 Initial the ZX-CCD operation
}
voi d | oop()
{

m = cam get mean() ;
/] Get the nmean value of the target object from ZX-CCD
| cd(“Mean of RGB #n%l, %d, %d “omo],nf1],n2]);
/] Displays RGB nmean value on the lower |ine of LCD screen

Listing L13-1 : cam_01.pde file; the C/C++ code of Wiring for getting RGB
data from ZX-CCD of the Robo-128

L13.4 Run the code.

Robo-128’s LCD shows message
Mean of RGB
RRR,GGG,BBB
Therefore
RRR is the mean value of red composition of the object
GGG is the mean value of green composition of the object

BBB is the mean value of blue composition of the object

With blue paper testing, BBB value is highest of all values.

Robo-128 Wiring I/0 Mobile robot I 111

L13.5 Change the blue paper to yellow paper. Record the RRR, GGG and BBB values
from the ZX-CCD.

Yellow paper

T

5to 10 cm.

The result value of RRR and GGG is higher than BBB value. Because yellow color
has red and green color composition.

These are some examples of tracking the blue and yellow object.

Object Red composition Green composition Blue composition
Blue paper 33 67 161
Yellow paper 128 180 31

112 1 Robo-128 Wiring I/0 Mobile robot

Experiment 14 : Blue and Yellow color tacking

Experiment 14.1 - Blue object tracking

This experiment presents an example of C/C++ programming to control the Robo-
128 to detect the blue object and displays the mean value to LCD screen. The interesting
value are middle mass value and confidence value.The condition of blue color tracking
are R_MEAN £30, G_MEAN+30 and B_MEAN+30. The mean value of each composition are
get from previous experiment as follows :

Object Red composition Green composition Blue composition
Blue paper 33 67 161
Yellow paper 128 180 31

The hardware connection still same the experiment 13.

L14.1.1 Create a new sketch file and save as cam_02. Type in the code following the

Listing L14-1.

#i ncl ude <robot. h>

#i ncl ude <cam h> /1 Include ZX-CCD library file

unsi gned char * m /1 Declare pointer variable to access the ZX- CCD

unsi gned char conf =0; /] Declare the confidence vairable for target
/1l color (it is blue in this code)

unsi gned char nx=0; /] Declare the nmiddl e mass vari abl e

int R_MEAN = 33; /] Set the nean val ue of red col or

int G_MEAN = 67; [/l Set the nean val ue of green col or

int B_MEAN = 161; /1 Set the nean val ue of blue col or

voi d setup()

{

caminit(); [/ Initial ZX-CCD
}
void | oop()

/1l Detect the target object by setting condition as
[/ R MEAN#/ -30, G MEAN#/ -30 and B MEAN#/ - 30

{
m= cam track_col or (R_MEAN 30, R MEAN+30, G MEAN- 30, G MEAN+30, B MEAN 30, B VEAN+30) ;
conf = n{7]; /l Store the confidence val ue
mk = nf0]; /[l Store the mddl e mass val ue (nx)
| cd(“Conf: % #nnx: % “, conf, nx);
/l Display the result at LCD nodul e
}

Listing L14-1 : cam_02.pde file; the C/C++ code of Wiring for deteting the
blue object of the Robo-128

Robo-128 Wiring I/0 Mobile robot I 113

L14.1.2 Compile and upload the sketch file to Robo-128 robot.
L14.1.3 Set the blue paper in front of the robot and far about 5 to 10 cm.
L14.1.4 Run the code
Robo-128’s LCD shows message
Conf: aaa
mx: bbb
Therefore
aaa is the confidence value of the target color

bbb is the middle mass value of x axis. This value represents the position of
objectin x axis.

L14.1.5 Move the blue paper with 5, 7 and 10cm. from the robot. Observe the robot’s

operation
Blue paper
Blue paper

Blue paper

From testing, the confidence value is high when the target color object near the
sensor and decreade the value when far away.

114 1 Robo-128 Wiring I/0 Mobile robot

L14.1.6 Shift the blue paper from left to right direction slowly. Observe the mx value.

Blue paper Blue paper Blue paper
A
5cm. 5cm. 5cm.

The middle mass value of x axis (mx) is increasing until it reaches 40. The object
position is center-front of the robot. The mx value still increaase following the object shift
right out of sensor range. The maximum value is 80

L14.1.7 Change the blue paper to yellow and test again.

The result is both value (conf and mx) near 0. Because the yellow color is more
different from blue color.

Experiment 14.2 - Yellow object tracking

This experiment is similar the previous experiment. Change the color target from
blue to yellow.

L14.2.1 Create a new sketch file and save as cam_03. Type in the code following the
Listing L14-3

L14.2.2 Compile and upload the sketch file to Robo-128 robot.
L14.2.3 Run the code
Robo-128’s LCD shows message
Conf: aaa
mx: bbb

Therefore
aaa is the confidence value of the target color

bbb is the middle mass value of x axis. This value represents the position of
objectin x axis.

Robo-128 Wiring I/0 Mobile robot I 115

#i ncl ude <robot. h>

#i ncl ude <cam h> /1 Include ZX-CCD library file

unsi gned char * m /] Declare pointer variable to access the ZX-CCD

unsi gned char conf =0; /] Declare the confidence vairable for target
/1l color (it is yellowin this code)

unsi gned char nx=0; /1l Declare the middle mass vari abl e

int R MEAN = 128; /I Set the mean value of red conponent for yellow

int G MEAN = 180; /1 Set the nean value of green conponent for yellow

int B MEAN = 31; /1 Set the mean value of blue conponnet for yellow

voi d setup()

{

caminit(); [/ Initial ZX-CCD

}

void | oop()

{

/1l Detect the target object by setting condition as
/1 R _MEANH/ -30, G MEAN+/ -30 BA MEANH/ - 30
m= camtrack_col or (R_MEAN 30, R MEAN+30, G MEAN- 30, G MEAN+30, B MEAN 30, B VEAN+30) ;

conf = n{7]; /l Store the confidence val ue
mk = nf0]; /[l Store the mddl e mass val ue (nx)
| cd(“Conf: % #nnx: % “, conf, nx);

[/l Display the result at LCD nodul e

Listing L14-2 : cam_03.pde file; the C/C++ code of Wiring for deteting the
yellow object of the Robo-128

L14.2.4 Move the yellow sheet with 5, 7 and 10cm. from the robot. Observe the robot’s
operation.

From the testing, the confidence value is high when the target color object near
the sensor and decreae the value when far away.

L14.2.5 Shift the yellow sheet from left to right direction slowly. Observe the mx value.

The middle mass value of x axis (mx) is increasing until it is 40 the object position is
center-front of the robot. the mx value still increaase following the object shift right out of
sensor range. The maiimum value is 80

L14.2.6 Change the yellow sheet to blue and test again.

The resultis both value (conf and mx) near 0. Because the blue coloris more different
from yellow color.

116 1 Robo-128 Wiring I/0 Mobile robot

Experiment 15 : Blue navigator robot

This experiment demonstrares the example of C/C++ programming to control the
Robo-128’s monement by tracking the blue object. There is 3 conditions as follows :

1. The robot must attempt to move towards the blue paper on the front of the
ZX-CCD.

2. If the blue paper is on the left or right of the ZX-CCD camera module, the
robot must turn around to find a blue sheet.

3. If cannot found the blue sheet, robot must stop.

L15.1 Create a new sketch file and save as robot_cam_detect blue. Type in the code
following the Listing L15-1.

L15.2 Compile and upload the sketch file to Robo-128 robot.
L15.3 Place in front of the robot to the direction under test.
L15.4 Run the code
Robo-128’s LCD shows message
SW1 Press
L15.5 Set the blue sheet in front of the robot and far about 5 to 10 cm.

L15.6 Press the SW1 and observe the robot’s movement.

Robo-128 moves forward to the blue sheet.

Blue paper

Robo-128 Wiring I/0 Mobile robot I 117

#i ncl ude <robot. h>

#i ncl ude <cam h>

unsi gned char * m
unsi gned char conf =0;
unsi gned char mnmx=0;

int R MEAN = 33;
int GMEAN = 67;
int B VEAN = 161;

void spin left(int p)
nmot or (0, p) ;
nmot or (1, p) ;
notor (2, p) ;

void spin_right(int p)
not or (0, -p) ;
notor (1, -p);
not or (2, -p);

void forward(int L,int
not or (O, -L);
nmot or (1, 0) ;
nmot or (2, R) ;

}

voi d setup()
caminit();

| cd(“SWL Press!”);
swl_press();

voi d | oop()
{

Include ZX-CCD library file

Declare pointer variable to access the ZX-CCD

Decl are the confidence vairable for target color (blue)
Declare the mddle mass variabl e

Set the nmean val ue of red conponent for blue

Set the nean val ue of green conponent for blue

Set the nean val ue of bl ue conponent for blue
Spin left function

Drives the front-left notor backward by p power
Drives the back wheel motor to right direction by p power
Drives the front-right notor forward by p power

Spin right function
Drives the front-left notor forward by p power

Drives the back wheel notor to | eft direction by p power
Drives the front-right notor backward by p power

R)// Myve forward function

11l
/1
11l

11l
/1
/1

Drives the front-left notor forward by L power
Stop the back wheel notor
Drives the front-right notor forward by R power

Initial ZX- CCD
Di spl ay nessage for pressing SW
VWait until the SW is pressed

Il Detect the target by setting condition as R MEANt/ -30, G MEANt/-30 BA MEANt/ - 30
m = camtrack_col or (R_VEAN- 30, R MEAN+30, G MEAN- 30, G_MEAN+30, B_MEAN- 30, B_ MEAN+30) ;

conf = n{7];
nx = nf0];
i f(conf>20)
i f(mx<M D_X-5)

spin_| eft(30);

el se if(m>M D_X+5)

{
spi n_right(30);
el se
f or war d(80, 80) ;
}
el se
{

not or _st op(ALL) ;

}
sl eep(2);

/1 Store the confidence val ue

/!l Store the middl e nass val ue (nx)

/| Detect blue ?

/1 Blue object is on the left ?

/] 1f yes, spin left the robot to face the object.
/[l Blue object is on the right ?

/1 1f yes, spin right the robot to face the object
/1l The obejct in front of the robot

/1l Move forward to object

/1l Do not detect the object
/'l Robot stop
[/l Delay for ZX-CCD

Listing L15-1 : robot_cam_detect_blue.pde file; the C/C++ code of Wiring for
Robo-128 to move follows the blue object

118 1 Robo-128 Wiring I/0 Mobile robot

L15.7 Shift the blue sheet from left to right direction of ZX-CCD. Observe the robot’s operation.

The Robo-128 will spin to follows the blue sheet.

Blue paper €é—== = —) Blue paper

L15.7 Move the blue sheet far from the Robo-128 or to back of the robot. Observe the
robot’s operation.

Robo-128 stops This is becasue the blue sheet is out of range.

i
INNOVATIVE EXPERIMENT

